Definition:

The DE:
$$dy/dx + P(x)y = f(x)y^n$$
 (1)

where *n* is any real number, is called *Bernoulli's Equation*.

Note:

Note for n = 0 and n = 1, (1) is linear, otherwise, let

$$u = y^{1-n}$$

to reduce (1) to a linear equation.

1

Example 1

Solve $x dy/dx + y = x^2y^2$. Solution:

Rewrite the DE as

 $dy/dx + (1/x)y = xy^2$ With n = 2, then $y = u^{-1}$, and $dy/dx = -u^{-2}(du/dx)$

From the substitution and simplification,

du/dx - (1/x)u = -x

The integrating factor on $(0, \infty)$ is

$$e^{-\int dx/x} = e^{-\ln x} = e^{\ln x^{-1}} = x^{-1}$$

2

Example 1

Integrating

$$\frac{d}{dx}\left[x^{-1}u\right] = -1$$

gives $x^{-1}u = -x + c$, or $u = -x^2 + cx$.

Since $u = y^{-1}$, we have y = 1/u and a solution of the DE is

 $y = 1/(-x^2 + cx).$