Bernoulli's Equation:

Definition:

The DE: $d y / d x+P(x) y=f(x) y^{n}$
where n is any real number, is called Bernoulli's Equation.

Note:

Note for $n=0$ and $n=1$,(1) is linear, otherwise, let

$$
u=y^{l-n}
$$

to reduce (1) to a linear equation.

Example 1

Solve

$$
x d y / d x+y=x^{2} y^{2} .
$$

Solution:
Rewrite the DE as

$$
d y / d x+(1 / x) y=x y^{2}
$$

With $n=2$, then $y=u^{-1}$, and

$$
d y / d x=-u^{-2}(d u / d x)
$$

From the substitution and simplification,

$$
d u / d x-(1 / x) u=-x
$$

The integrating factor on $(0, \infty)$ is

$$
e^{-\int d x / x}=e^{-\ln x}=e^{\ln x^{-1}}=x^{-1}
$$

Example 1

Integrating

$$
\frac{d}{d x}\left[x^{-1} u\right]=-1
$$

gives $x^{-1} u=-x+c$, or $u=-x^{2}+c x$.
Since $u=y^{-1}$, we have $y=1 / u$ and a solution of the DE is

$$
y=1 /\left(-x^{2}+c x\right)
$$

